Как определить содержание щелочи в воде. Определение общей щелочности и карбонатной жесткости воды. Описание лабораторной установки

Жесткость воды зависит от присутствия в ней растворимых солей кальция и магния. Различают карбонатную (устранимую) жесткость и постоянную. Карбонатная жесткость обусловлена присутствием в растворе бикарбонатов кальция и магния Са(НСО 3) 2 и Mg (НСО 3) 2 . Постоянная жесткость воды обусловлена присутствием в воде других растворимых солей кальция и магния (сульфатов). Сумма постоянной и карбонатной жесткости составляет общую жесткость воды. Общая щелочность воды обусловлена присутствием ионов ОН - , СОз 2- , НСОз - .

Определение основано на титровании раствора, содержащего NaOH и Na 2 CO 3 , стандартным раствором хлорводородной кислоты с двумя индикаторами - фенолфталеином и метиловым оранжевым, применяемыми последовательно. При титровании раствора, содержащего эти вещества, хлорводородной кислотой в присутствии фенолфталеина происходят следующие реакции:

HCl+NaOH= NaCl +H 2 O

HCl+ Na 2 CO 3 =NaCl + NaHCO 3

Следовательно по фенолфталеину оттитровывается вся щелочь и карбонат до бикарбоната и обесцвечивание фенолфталеина указывает на то, что обе реакции полностью завершились, и вместо исходных веществ в растворе имеются NaCl и NaHCO 3 . Бесцветный раствор, содержащий эти продукты реакции, имеет слабощелочную реакцию, при добавлении метилового оранжевого он окрашивается в желтый цвет, и если продолжать титрование кислотой, будет происходить следующая реакция:

HCl + NaHCO 3 = NaCl+H 2 CO 3 = NaCl+CO 2 +H 2 O

Следовательно, по метиловому оранжевому оттитровывается бикарбонат. Изменение желтой окраски на розовую свидетельствует о том, что реакция полностью закончилась.

Разность объемов хлорводородной кислоты (V HCl м-о - V HCl ф-ф), затраченных на титрование смеси с метиловым оранжевым и фенолфталеином, соответствует половине количества карбоната натрия, присутствующего в растворе. Удваивая эту разность, получают объем кислоты , эквивалентный количеству всего карбоната. Вычитая указанную разность из объема V HCl ф-ф, израсходованного на титрование смеси с фенолфталеином, находят объем кислоты, эквивалентный количеству гидроксида натрия.

У подавляющего большинства природных вод ионы НСОз - связаны только с ионами кальция и магния. Поэтому в тех случаях, когда щелочность по фенолфталеину равна нулю, можно считать, что общая щелочность воды равна ее карбонатной жесткости.

Порядок выполнения работы. 1. Из общего раствора объемом 100 мл исследуемой воды, отбирают 20 мл пипеткой или цилиндром в коническую колбу вместимостью 100 мл.

2. Добавляют 2-3 капли раствора фенолфталеина и быстро титруют кислотой. До 12-15 мл титрование проводят быстро, перемешивая раствор, а под конец титрант добавляют по каплям до обесцвечивания. Записывают отсчет по бюретке (V HCl ф-ф),

3. Прибавляют в колбу 2 капли метилового оранжевого и продолжают титрование до перехода окраски из желтой в оранжевую. Производят второй отсчет по бюретке (V HCl м-о).

Министерство образования и науки РФ

Волгоградский государственный архитектурно–строительный

университет

Кафедра «Водоснабжение и водоотведение»

Химия воды

Методические указания к лабораторным работам по дисциплине

«Химия воды »

Волгоград 2013

Введение

Лабораторный практикум составлен в соответствии с рабочей программой по дисциплине «Химия воды».

Практикум составлен с учетом того, что студенты уже прослушали лекции по курсу «Химия», «Прикладная химия» и достаточно ознакомлены с работой в химической лаборатории и имеют определенные теоретические представления об основных физических и химических свойствах воды. Одновременно с выполнением лабораторного практикума читается курс лекций «Химия воды», где студенты знакомятся с основными характеристиками природных и сточных вод.

1. Цели и задачи практикума

Целью лабораторного практикума является практическое знакомство студентов с оборудованием и посудой, которые применяются для выполнения анализов воды в производственных и исследовательских лабораториях. Будущий инженер, выполняя исследовательские работы, приобретает практические навыки, необходимые для его дальнейшей деятельности.

Задачей лабораторного практикума является практическое усвоение курса ««Химия воды»», а также получение навыков самостоятельного проведения лабораторных работ исследовательского характера.

Лабораторный практикум охватывает работы по изучению различных свойств воды, изучение методик определения показателей качества воды включает 6 работ, которые предусматривают:

Работа №1. Определение физических показателей качества воды.

Работа №2. Определение кислотности воды.

Работа №3. Определение щелочности воды.

Работа №4. Определение жесткости воды. Определение концентрации ионов кальция и магния в воде.

Работа №5. Определение различных форм углекислоты.

Работа №6. Определение пермаганатной окисляемости воды.

Перед проведением любой лабораторной работы студенты должны ознакомиться с целью, методикой выполнения работы и необходимых расчетов, устройством прибора, уметь обращаться с химической посудой, реактивами, а также обязаны подробно ознакомиться с основными положениями «Инструкции по технике безопасности для работающих в химической лаборатории». По окончании работы студенты должны оформить отчет в лабораторном журнале, указав основные расчеты, проанализировать полученные данные, сделать выводы о качестве анализируемой воды.

2. Правила техники безопасности в лаборатории

Проведение лабораторных работ требует строжайшего соблюдения студентами правил безопасности работы. Все реактивы должны находиться в закрытой посуде с четкой надписью, указывающей название и концентрацию реактива. При пользовании растворами крепких кислот и щелочей необходимо исключать возможность попадания их на руки, одежду, лицо. Отбор концентрированных жидкостей производить мерными цилиндрами или пипетками с резиновыми баллончиками. Разлитые кислоты или щелочи необходимо сразу же засыпать песком, нейтрализовать, после чего провести уборку. При пользовании нагревательными приборами необходимо следить за исправностью проводки, степенью нагрева розеток, штепсельных вилок, не следует оставлять нагревательные приборы без присмотра. Нагретые предметы, посуду рекомендуется брать щипцами, колбодержателями, жгутом из полотенца.

Каждый студент должен соблюдать санитарные меры предосторожности при выполнении лабораторных работ. Необходимо:

– избегать непосредственного контакта с анализируемой водой и осадком;

– анализы проводить в резиновых перчатках;

– использованную лабораторную посуду необходимо обеззараживать дезинфицирующем раствором;

– по окончании анализов привести рабочее место в порядок и тщательно вымыть руки.

Лабораторная работа №1

Определение физических показателей качества воды.

Цель работы: изучение методик определения физических показателей качества воды (температура, цветность, запах, вкус, плотность).

Точность анализа воды во многом зависит от правильного отбора пробы. Так как многие физические и химические показатели воды изменяются во времени, то для отдельных определений в официальных изданиях указан предельной срок хранения пробы. Отбирают пробы в склянки с резиновыми или притертыми пробками, которые предварительно ополаскивают исследуемой водой. Помещая на хранение, пробу консервируют хлороформом (2 мл на I л воды). Перед анализом, в случае необходимости, проводят предварительную подготовку пробы: удаляют взвешенные вещества (фильтрованием, центрифугированием, отстаиванием), упаривают в фарфоровых чашках.

Оценивания качество воды, в первую очередь учитывают такие важные физические показатели, как температура, цветность, запах, вкус, прозрачность, мутность.

1.1. Определение температуры воды

В водопроводных и насосных установках температуру определяют, погружая термометр в струю стекающей воды. Отсчет производят, не вынимая термометр из воды. При отдельных определениях термометр помещают на 3 – 5 мин. в большой сосуд с водой. Оптимальные температурные пределы для питьевой воды 7 – 12 0 С.

1.2. Определение цветности воды

Цветность вод обусловлена наличием большого количества взвешенных частиц, ее определяют после отстаивания, фильтрования или центрифугирования. Оценивают цветность в градусах дихромат – кобальтовой шкалы.

Качественную оценку цветности производят, сравнивая ее с дистиллированной водой. Для этого в специальные пробирки из бесцветного стекла наливают отдельно исследуемую воду и дистиллированную. На фоне белого листа бумаги при дневном освещении воду рассматривают сверху и сбоку. На основании этого оценивают цветность, т.е. указывают наблюдаемый цвет (слабо­-белый, бурый и т.п.). При отсутствии окраски вода считается бесцветной. Количественно цветность определяют по дихромат – кобальтовой шкале.

Ход работы . Мутную воду предварительно отфильтровывают. Для определения применяют бесцветные цилиндры диаметром 30 мм и высотой 350 мм.

1.3. Определение запаха воды

Запах сточной воды определяют качественно при открывании пробы. Вначале дают качественную характеристику запаха по соответствующим признакам (болотный, землистый, гнилостный, рыбный, ароматический и т.п.). Интенсивность оценивают по пятибалльной шкале (табл. 1) при температуре 20 0 С и 60 0 С.

Ход работы. В колбу с притертой пробкой налить исследуемую воду (2/3 объема) и сильно встряхнуть в закрытом состоянии. Затем открыть и сразу же отметить характер и интенсивность запаха.

Таблица 1

Характер запахов и вкусов по степени их интенсивности

Запах (вкус)

Интенсивность

Оценка в баллах

Отсутствует

Не ощущается

Очень слабый

Обнаруживается только опытным исследователем

Обнаруживается потребителем в том случае, если обратить его внимание

Заметный

Легко обнаруживается потребителем

Отчетливый

Вода непригодна для питья

Очень сильный

Вода непригодна для питья

1.4. Определение вкуса воды

Различный вкус воды может быть обусловлен присутствием химических соединений (хлористого натрия, солей железа, марганца, магния и др.), а также продуктами жизнедеятельности водных организмов. Согласно СанПиН 2.1.4.1074-01 различают четыре вида вкуса: горький, сладкий, кислый, соленый. Остальные вкусовые ощущения характеризуются как привкусы. Количественно интенсивность вкуса определяют по той же шкале, что и запах (см. табл.1).

Воду, безопасную в санитарном отношении, исследуют в сыром виде, в других случаях – после кипячения и последующего охлаждения до 18 – 20 0 С. Нельзя пробовать загрязненную воду. Для определения характера и интенсивности вкуса 10 – 15 см 3 исследуемой воды набирают в рот и держат 10 – 15 сек, не проглатывая. Интенсивность вкуса питьевой воды, согласно СанПиН 2.1.4.1074-01, не должна превышать 2 баллов (см. табл. 1).

1.5. Определение плотности воды

Плотность чистой воды зависит от температуры. При 15 0 С она равна 0,99913 г/см 3 , при 20 0 С – 0,99823 г/см 3 . Плотность сточных вод зависит и от растворенных соединений. Обычно плотность воды близка к единице.

Плотность воды с точностью до третьего десятичного знака можно определить ареометром. Исследуемую воду налить в цилиндр на 100 мл. Осторожно опустить в нее ареометр. Уровень воды должен оказываться в пределах шкалы ареометра. Если шкала ареометра будет выше или ниже уровня воды, то следует заменить ареометр. Показание шкалы ареометра на уровне поверхности воды соответствует ее плотности при данной температуре.

1.6. Определение мутности воды

Мутность воды обусловлена присутствием в природной воде нерастворенных и коллоидных веществ неорганического и органического происхождения. Мутность воды характеризуется терминами: прозрачная, слабая муть, мутная и т.д.

Определить мутность воды можно весовым методом, визуальным, мутномером, фотоэлектронным тиндалеметром и фотоэлектрическим колориметром.

1.6.1 Гравиметрический метод

Ход работы. 500 – 1000 мл мутной воды профильтровать через плотный фильтр (диаметром 9 – 11 см), предварительно высушенный при 105 0 С в течение 1,5 – 2 часов и взвешенный в закрытом бюксе на аналитических весах. После фильтрования фильтр с осадком перенести в тот же бюкс, высушить при 105 – 110 0 С 1,5 – 2 часа, охладить в эксикаторе и взвесить на аналитических весах в закрытом бюксе. Содержание взвешенных веществ в исследуемой воде рассчитать по формуле:

q 1 – масса бюкса с просушенным фильтром после фильтрования воды, г,

q 2 – масса бюкса с просушенным фильтром до фильтрования, г,

V – объем профильтрованной воды, мл.

1.6.2 Визуальный метод

Прозрачность воды зависит от её мутности. Мерой прозрачности служит высота водяного столба, сквозь который ещё можно прочитать шрифт определенного типа.

Результаты указывают в сантиметрах. Определяют высоту водяного столба, сквозь который типографический шрифт становится плохо различим.

Ход работы. Цилиндр, под дно которого подложен хорошо освещенный шрифт, наполняют перемешанной пробой воды до такой высоты, чтобы буквы, рассматриваемые сверху, стали плохо различимы. Пробу просматривают при рассеянном дневном освещении. Определение повторяют несколько раз. Записывают высоту водяного столба в сантиметрах и вычисляют среднее значение. Согласно СанПиН 2.1.4.1074-01 прозрачность питьевой воды должна быть не менее 30 см.

Вопросы к отчету лабораторной работы №1

1) Назовите основные физические показатели качества воды. Причины, обуславливающие их наличие (кратко).

2) Температура. На какие процессы, происходящие в воде, она влияет. В каких единицах измеряется. Каким способом производят измерение температуры. Оптимальное значение.

3) Какие примеси природных вод обуславливают запах, вкус и привкус воды?

4) Методики определения вкуса и запаха. Оптимальные значения.

5) Что такое дезодорация? Методы устранения привкусов и запахов воды.

6) Прозрачность и мутность. Какие примеси природных вод обуславливают мутность. Способы определения. Оптимальные значения.

7) Какие вещества, присутствующие в водоемах, обуславливают цветность воды. Методы определения. Оптимальное значение.

Лабораторная работа №2

Определение кислотности воды.

Цель работы : изучить методики определения кислотности (свободной и общей) воды.

2.1 Определение кислотности воды

Кислотность воды может быть обусловлена наличием свободных кислот или солей, образованных слабыми основаниями и сильными кислотами (например, FeSO 4 , AlCl 3 , ZnSO 4 и др.). В поверхностных природных водах и в большинстве подземных кислотность воды обычно вызывается присутствием свободной угольной кислоты. В производственных сточных водах кислотность может быть вызвана наличием свободных сильных (HCl , H 2 SO 4 , HNO 3 ) и слабых кислот (НС N , H 2 S и др.), а также солей тяжелых металлов. При гидролизе солей, образованных сильной кислотой и слабым основанием, происходит снижение величины pH до 4,5 и ниже.

Определяют кислотность воды методом нейтрализации, в основе которого лежит реакция взаимодействия кислоты с основанием. Общая кислотность воды характеризуется количеством сильного основания, например гидроксида натрия, необходимого для нейтрализации соединений, содержащихся в воде. Она определяется числом мг-экв/л сильного основания, необходимым для нейтрализации веществ, содержащихся в 1 л воды, рН которой равна 8,3. Если рН воды выше 8,3, то кислотность воды принимается равной нулю. В тех случаях, когда рН воды ниже 4,5, считается, что она обладает свободной кислотностью.

При отборе пробы воды для определения кислотности необходимо принимать меры для уменьшения контакта воды с углекислотой воздуха. С этой целью используют герметически закрывающиеся пробоотборники, а из крана воду отбирают при помощи резиновой трубки, которая опускается на дно склянки. Вода должна вытеснить воздух и несколько раз смениться в склянке. Для титрования используют колбы, закрытые резиновой пробкой с отверстием для подачи рабочего раствора.

Определение кислотности проводятся индикаторным и электрометрическим методами.

Проведению анализа мешают повышенная карбонатная жесткость воды (боле 4 – 5 мг-экв/л), присутствие солей тяжелых металлов, для индикаторного метода – цветность и мутность воды, свободный хлор. При значительной карбонатной жесткости воды в процессе титрования гидрокарбонаты кальция и магния переходят в труднорастворимые карбонаты, вызывая помутнение исследуемого раствора. Снять это отрицательное воздействие можно разбавлением пробы прокипяченной дистиллированной водой. При добавлении рабочего раствора щелочи, соли тяжелых металлов образуют труднорастворимые соединения, которые затрудняют определение. Уменьшить мешающие воздействие этих соединений можно добавлением небольшого количества (0,8 – 1,2 мл) раствора сегнетовой соли или кипячением пробы (при этом следует учитывать, что углекислота после кипячения практически удаляется из воды)

Электрометрический метод применим для анализа цветных и мутных вод.

2.1.1 Определение свободной кислотности

а) Индикаторный метод

Реактивы

1) 0,1н раствор NaOH ;

2) метилоранж (0,03%-ный водный раствор).

Ход работы. В коническую колбу отмерить 100 мл (или другой необходимый) объем воды, прибавить 2-3 капли метилоранжа. Если раствор приобретет розовую окраску, то он имеет свободную кислотность. Титровать пробу 0,1 н раствором гидроксида натрия до перехода розовой окраски в желто – розовую, и далее рассчитать свободную кислотность по формуле:

где х – свободная кислотность воды, мг-экв/л;

V N а OH объем рабочего раствора N а OH , пошедший на титрование пробы воды, мл;

N NaOH – нормальность раствора NaOH , г-экв/л;

где х – общая кислотность воды, мг-экв/л;

V N а OH – объем рабочего раствора NaOH , пошедший на титрование пробы воды, мл;

N N а OH нормальность рабочего раствора NaOH , г-экв/л;

где х – свободная щелочность воды, мг-экв/л

V HCl – объем рабочего раствора НСl, пошедший на титрование пробы, мл;

N HCl – нормальность рабочего раствора НСl, г-экв/л;

где х – общая щелочность воды, мг-экв/л;

V HCl – объем рабочего раствора НСl, пошедший на титрование пробы, мл;

N NC l – нормальность рабочего раствора НСl, г-экв/л;

где Ж о – общая жесткость воды, мг-экв/л;

V 1 – объем рабочего раствора трилона Б, пошедшего на титрование пробы воды, мл;

N – нормальность рабочего раствора трилона Б, мг-экв.л;

V 2 объем пробы воды, мл.

4.3 Определение ионов кальция и магния

Реактивы:

1) 0,1 н раствор трилона Б;

2) 2 н раствор NaOH;

3) индикатор мурексид сухой;

4) 5% раствор Na 2 S;

5) 1% раствор гидроксиламина;

6) индикатор хром темно–синий;

7) аммонийно–буферный раствор.

4.3.1 Определение ионов кальция

Ход работы. К 100 мл исследуемой воды добавляют 5 мл раствора NaOH, несколько (6 – 8) капель Na 2 S и на кончике лопаточки сухого мурексида. Раствор приобретает темно–розовую окраску. Медленно титруют раствором трилона Б до изменения окраски в винно–красную. Содержание кальция (х) вычисляют по формуле:

где х – содержание кальция в анализируемой воде, мг/л;

a

где у – концентрация ионов магния в анализируемой пробе, мг/л;

b – количество раствора трилона Б, пошедшее на титрование пробы, мл;

Из уравнений следует, что концентрация свободной угольной кислоты находится в прямой зависимости от концентрации водородных ионов, а концентрация карбонат-ионов – в обратной. При рН < 4,2 в природных водах содержится только свободная угольная кислота. Появление в воде гидрокарбонат-ионов повышает рН от 4,2 до 8,3; в воде присутствует свободная угольная кислота и ионы НСО 3 - , причем с возрастанием рН увеличивается концентрация НСО 3 - – ионов и понижается концентрация свободной угольной кислоты. При рН = 8,4 в воде присутствуют практически только гидрокарбонаты (99,7%). При дальнейшем увеличении рН в воде наряду с гидрокарбонат-ионами появляются и карбонат-ионы, которые при рН > 10 становятся преобладающими.

Связанной считается угольная кислота в форме карбонатов, форме гидрокарбонатов она состоит из связанной и полусвязанной кослоты (поровну), так как при кипячении половина гидрокарбонатов переходит в свободную угольную кислоту.

2 НСО 3 - = СО 3 2- + СО 2 + Н 2 О.

Если в воде находится свободная угольная кислота и НСО 3 - - ионы, то количество связанной кислоты равно содержанию полусвязанной. При

рН > 8,4 количество связанной кислоты () будет больше полусвязанной ().

При одновременном присутствии в воде ионов HCO 3 - и СО 3 2- определение ведут в одной пробе, нейтрализуя рабочим раствором соляной кислоты щелочность, создаваемую этим ионами. Определение основано на изменении содержания различных форм углекислоты в зависимости от рН. В присутствии кислоты ионы CО 3 2- и НСО 3 - переходят в свободную угольную кислоту. Карбонаты с соляной кислотой взаимодействуют в две стадии. На первой стадии карбонаты переходят в гидрокарбонаты:

Проба, оттитрованная рабочим раствором кислоты в присутствии фенолфталеина, содержит гидрокарбонаты, ранее находившиеся в воде, и гидрокарбонаты, образовавшиеся из карбонатов. Гидрокарбонаты переводят в свободную угольную кислоту последующим титрованием пробы кислотой в присутствии метилового оранжевого.

При расчете содержания СО 3 2- -ионов объемов соляной кислоты израсходованной на титрование пробы воды с фенолфталеином, соответственно удваивается. А при расчете количества гидрокарбонатов из объема кислоты, израсходованного на титрование воды в присутствии метилоранжа, вычитается объем, пошедший на титрование с фенолфталеином.

Карбонат – ионы содержатся в щелочных водах. В этом случае, в воде определяют только гидрокарбонаты титрованием кислотой в присутствии метилоранжа.

5.1 Определение содержания свободной углекислоты

Реактивы:

1) 0,02 н раствор NaOH;

2) 0,1 % спиртовой раствор фенолфталеина.

Ход работы. В коническую колбу отмеряют 100 мл исследуемой воды, добавляют 2 – 3 капли фенолфталеина и титруют пробу 0,02 н раствором NaOH до появления розового окрашивания, не исчезающего в течение 3 мин. Определение повторить 3 раза и взять среднее значение. Содержание свободной углекислоты ведут по формуле:

– количество воды, взятое для определения, мл.– количество воды, взятое для определения, мл.

Вопросы к отчету лабораторной работы № 5

1) Назовите основные формы углекислоты?

2) От чего зависит содержание той или иной формы углекислоты?

3) В какой зависимости от рН находятся формы угольной кислоты?

4) Уравнения и константы диссоциации угольной кислоты.

Лабораторная работа №6

Определение перманганатной окисляемости воды

Цель работы : изучить методики определения перманганатной окисляемости воды.

Наличие в воде органических веществ и легко окисляющихся неорганических соединений (Fe 2+ , сульфитов, нитритов, H 2 S и др.) характеризует окисляемость воды. Окисляемость – один из показателей степени загрязнения воды органическими примесями.

Окисляемость органических веществ, растворенных в воде, характеризуется количеством кислорода, расходуемого на их окисление в определенных условиях.

Окисляемость воды выражают числом миллиграммов кислорода, израсходованных на окисление органических веществ, содержащихся в 1 л воды. В качестве окислителей органических веществ, при определении окисляемости воды, обычно применяют перманганат калия (перманганатная окисляемость), дихромат (или иодид) калия (дихроматная (или иодатная) окисляемость или химическое потребление кислорода – ХПК). Во избежание ошибки, предварительно в исследуемой воде определяют неорганические восстановители.

В настоящем пособии рассматривается методика определения перманганатной окисляемости воды. Если концентрация хлоридов в исследуемой воде не превышает 100 мг/л, то органические вещества окисляют перманганатом калия в кислой среде (метод Кубеля). При более высоком содержании хлоридов используется реакция окисления перманганатом калия в щелочной среде (метод Шульца).

Органические вещества, содержащиеся в исследуемой воде, при кипячении в присутствии серной кислоты окисляются перманганатом калия. К пробе воды прибавляют заведомо избыточное количество раствора KMnO 4 определенной концентрации. В этих условиях окисляются не все органические вещества, поэтому окисляемость характеризует содержание только легкоокисляющихся примесей. Для получения более точных результатов используется обратное титрование: к прокипяченной пробе прибавляют избыток щавелевой кислоты, при этом часть ее окисляется оставшимся перманганатом калия, а остальное количество Н 2 С 2 О 4 оттитровывают перманганатом калия.

Предварительная обработка посуды перед анализом. Во избежание ошибки, связанной со случайным загрязнением колбы примесями, способными к окислению, перед определением окисляемости в колбу наливают 100 – 150 мл концентрированного раствора перманганата калия, подкисленного серной кислотой, и кипятят 3 – 5 мин. Затем выливают смесь, и образовавшийся на стенках колбы осадок растворяют в небольшом количестве концентрированной соляной кислоты. Колбы ополаскивают дистиллированной водой и вновь в нее наливают окислительную смесь. Кипячение повторяют 2 – 3 раза, после чего ополаскивают колбу дистиллированной водой.

6.1 Метод Кубеля

Реактивы:

1) 0,01н раствор KMnO 4 ;

3) 0,01н раствор H 2 С 2 О 4 ;

3) 4н раствор H 2 SO 4 .

Ход работы. В предварительно подготовленную коническую колбу на 250 мл отмерить 100 мл исследуемой воды, прилить 5 мл 4н раствора кислоты и прилить из бюретки точно 10 мл 0,01 раствора КМnО 4 . Колбу закрыть воронкой, смесь кипятить 10 мин. (считая с момента кипения). Затем снять с огня.

Щелочность воды – это общее содержание в воде веществ, обуславливающих при диссоциации или в результате гидролиза повышенную концентрацию ионов ОН - .

В исходной воде щелочность обычно связана с присутствием ионов . В умягченной и котловой воде, кроме перечисленных веществ, щелочность обусловливается также ионами В зависимости от того, какой анион присутствует в воде , щелочность называется соответственно бикарбонатной Щ б, карбонатной Щ к или гидратной Щ г.

Большая щелочность воды определяется количеством соляной кислоты, затраченной на титрование анализируемой пробы воды (100 мл пробы) в присутствии индикатора фенолфталеина (I этап) и метилоранжа (II этап) 0,1 н. Количество кислоты (мл), израсходованной при титровании, равно щелочности испытуемой воды при рН = 3...4 .

Малая щелочность воды определяется путем титрования 100 мл пробы в присутствии фенолфталеина (I этап) и метилрота или смешанного индикатора (II этап) 0,01 н. раствором серной или соляной кислоты. Величина щелочности при этом определяется по формуле:

где п – количество израсходованного 0,01 н. раствора кислоты, мл.

Анализы по определению отдельных форм щелочности основаны на том, что при титровании пробы воды сильной кислотой, реакции, протекающие между кислотой и различными анионами, обусловливающими форму щелочности, заканчиваются при различных значениях рН раствора. Титрование проводится в присутствии двух индикаторов, каждый из которых рассчитан на определенный диапазон значений рН. Одним индикатором является метилоранж, окраска которого изменяется на желтую в кислой среде при рН=3...4, вторым - фенолфталеин, окраска которого изменяется на розовую в щелочной среде при рН > 8,4. Следует особо отметить, что значение рН=8,4 имеют растворы чистых гидрокарбонатов (НСО3), постоянно присутствующих в водах. При анализе пробы воды на первом этапе используется фенолфталеин, а на втором - метилоранж.

Оценка отдельных форм щелочности производится в соответствии с полученными при титровании данными. При этом возможны следующие случаи:

1) фенолфталеин не дает розового окрашивания, т.е. Ф = 0, где Ф - расход соляной кислоты, пошедшей на титрование пробы, окрашенной фенолфталеином, мл. Метилоранж дает желтое окрашивание пробы, которая затем титруется соляной кислотой до изменения окраски. В этом случае в воде присутствуют только бикарбонаты (бикарбонатная щелочность) Щб, которая подсчитывается по формуле (1), где А = М, а М - расход кислоты на титрование пробы воды, окрашенной метилоранжем, мг-экв/л;

2) фенолфталеин дает розовое окрашивание, причем при титровании пробы оказалось, что 2Ф < М. В этом случае в воде присутствуют как бикарбонаты, так и карбонаты. Расчет Щб производится по формуле (1), где А = М - 2Ф, для расчета Щк следует принять А = 2Ф;

3) фенолфталеин дает розовое окрашивание, причем 2Ф = М. В этом случае в воде присутствуют только карбонаты; для расчета Щк в формулу (1) следует подставить А = 2Ф;

4) фенолфталеин дает розовое окрашивание, причем 2Ф>М. В этом случае в воде присутствуют карбонаты и гидраты. Для расчета Щк в формулу (1) следует подставить А=2(М-Ф), а для расчета Щг - А = (2Ф - М);

5) фенолфталеин дает розовое окрашивание, причем М = 0 (т.е. после обесцвечивания фенолфталеина дальнейшее увеличение объема метилоранжа сразу вызывает оранжевую окраску пробы воды). В этом случае присутствуют только гидраты; для расчета Щг в формулу (1) следует подставить А = Ф. При Кн = 0,1 мг-экв/л и V = 100 мл для определения формы и численного значения щелочности удобно пользоваться таблицей.

Когда заходит речь о качестве питьевой воды, мы, прежде всего, обращаем внимание на отсутствие вредных примесей, цвет, запах и т.п. А вот о важности такого показателя как щёлочность воды знают далеко не все. В этой статье мы попробуем разобраться, почему норма щёлочности воды так важна для нашего с вами здоровья, как она определяется и как достичь оптимальных показателей щёлочности воды.

Определение щёлочности: немного теории

Для начала попробуем разобраться, что же собственно такое «щёлочность воды». Справочная литература предлагает такое определение щёлочности: это общее число содержащихся в воде гидроксильных ионов, а также анионов слабых кислот. Щёлочность воды может быть гидратная, карбонатная, бикарбонатная, в зависимости от наличия в ней определённых веществ. Также следует разграничить понятие «щёлочность воды» и её водородный показатель (pH). Он показывает концентрацию в воде свободных ионов водорода. Если pH низкий (< 7), то мы говорим о кислой среде, если высокий (>7) – о щелочной. Взаимосвязь pH и щёлочности прямопропорциональна: чем больше щёлочность воды, тем выше показатель pH. Щёлочность измеряется в ммоль/дм3, а рН – просто число единиц.

Согласно Государственным санитарным нормам, оптимальный показатель pH для питьевой воды от 6,5 до 8,5 единиц. Это совпадает с требованиями, применяющимися для контроля качества питьевой воды в США. Нормативы ЕС в этом вопросе отличаются несущественно (от 6,5 до 9,5). Показатель дистиллированной воды – 7 единиц. Это условно нейтральная вода. Показатели pH питьевой воды строго контролируются во всех странах.

А вот нормы щёлочности воды украинскими Государственными санитарными нормами не регулируются. Хотя и учитываются на предприятиях водоснабжения для правильного расчета реагентов, которые используют для обработки воды.

Относительно расчёта щёлочности воды стоит отметить, что оптимальные нормы немного отличаются в зависимости от того, для каких нужд используется вода.

Значение нормы щёлочности воды

Давайте попробуем разобраться, почему такое большое значение придаётся нормам щёлочности воды? Оказывается, от щёлочности воды напрямую зависит состояние нашего организма. Оптимальная норма щёлочности воды поможет наладить такие функции организма:

  • обменные процессы
  • восстановление микрофлоры кишечника
  • активизация мозговой деятельности за счёт обогащения мозга кислородом
  • укрепление иммунитета

Это неудивительно, поскольку в самом организме человека преобладают нейтральные или слабощелочные жидкости. Интересно, что pH человеческой крови составляет 7,43 (т.е. практически нейтрален).

Поэтому очень важным является определение щёлочности питьевой воды и контроль этих показателей.

Японские учёные установили, что если человек постоянно употребляет воду щёлочностью 6,5 – 7, то продолжительность жизни увеличивается на 20 – 30%. Дело в том, что кислая среда (низкая щёлочность воды) создаёт идеальные условия для развития различных болезней.

Для поддержания нормального кислотно-щелочного баланса и хорошего самочувствия важно «не закислять» организм. Но проблема в том, что большинство продуктов имеют кислую среду. А значит, для поддержания баланса важно пить воду, именно она способствует тому, что кровь может переносить больше кислорода. Но полезна не всякая вода. В первую очередь нужно обращать внимание на её щёлочность. Лучше, если она близка к нейтральной. Государственные санитарные нормы регламентируют щёлочность питьевой бутилированной воды и воды из бюветов на уровне 6,5 ммоль/дм3. Норма щёлочности воды, поступающей в централизованные водопроводные системы, регулируется ещё на этапе водоподготовки. Повышенная кислотность может наблюдаться в сильно загрязнённых природных водах (например, после сброса отходов промышленных предприятий, когда в воду попадает большое количество сильных кислот и их солей).

Кстати, вода повышенной щёлочности также не слишком полезна. Так, после водных процедур в такой воде может появляться:

  • зуд на коже
  • высыпания
  • раздражения на слизистых

Расчёт щёлочности воды и регулирование уровня рН

В разных регионах уровень pH водопроводной воды колеблется от 5,5 до 10 единиц. При необходимости этот показатель можно и нужно регулировать. Для измерения рН в домашних условиях можно использовать специальные тестеры. А вот для определения щёлочности воды понадобиться сдать образцы на в специализированную лабораторию. После того, как вы получите результаты исследования, специалисты «УкрХимАнализ» дадут необходимые рекомендации. Если вода имеет повышенную щёлочность, то эффективным способом её снижения может стать фильтр. Хорошо справляются с данной проблемой, в частности, системы обратного осмоса. Они помогают не только снизить щёлочность воды, но и нормализовать её состав в целом, уменьшить минерализацию и жёсткость.

Вода является основным жизненно важным элементом, без которого невозможно здоровое функционирование не только человеческого организма, но и всего живого на планете. Однако нередко случается так, что та вода, которая поступает в жилища людей или на промышленные предприятия, является настолько засоренной и непригодной для употребления и использования, что остро нуждается в проверке на несколько основных показателей и срочной очистке. Для того чтобы произвести правильную и эффективную очистку воды для бытового использования, сначала нужно понять из чего она состоит, выяснить определение щелочности воды ГОСТ и то, какие патогенные реакции и химические процессы загрязнение может вызвать при попадании в организм.

Для того чтобы понять важность своевременной проверки жидкостей на пригодность и определение щелочности воды, нужно также понимать, насколько важна и необходима жидкость для человеческого организма. Важность этого элемента и его необходимость человек может не замечать и принимать как данность. Однако от жидкости в теле человека зависит множество реакций и функций. Крепкое и здоровое тело – результат употребление здоровых продуктов питания и воды. Поэтому от чистоты и качества состава жидкости зависит напрямую длительность и качество жизни каждого человека. В воде, которую мы ежедневно употребляем в пищу или в чистом виде, может содержаться большое количество патогенных веществ и микроэлементов, бактерий и вирусов, которые при повышенной концентрации могут спровоцировать появление побочных заболеваний, инфекций, раковых опухолей и эпидемий.

Важно помнить, что отказаться от воды нельзя, поскольку человеческий организм состоит по большей части из жидкостей, запасы которых нужно постоянно пополнять. Поэтому избежать проблемы загрязнения и очистки воды невозможно. Международные организации постоянно работают над тем, чтобы придумать максимально эффективные и действенные способы как определить щелочность воды, проверить и очистить жидкости, дабы каждый человек мог быть уверенными в том, что употребляет максимально качественный фильтрованный продукт без наличия побочных примесей, бактерий и тяжелых металлов.

Для того чтобы понять, зачем нужно очищать и делать на щелочность, стоит сначала разобраться в том, какие основные свойства и критерии воды считаются жизненно важными для человеческого функционирования и здоровья. В настоящее время существует несколько стандартизирующих организаций, которые могут определить качество воды и нормы ее загрязненности:

  • правила санитарного характера, которые устанавливает научное сообщество микробиологов и химиков Российской Федерации (ГОСТ щелочности воды, СанПиН РФ);
  • стандарты качества воды и нормы ее очистки, которые регламентируются международными организациями по охране окружающей среди и здравоохранения (ВОЗ);
  • нормы и рамки здорового очищения и состава воды, которые были оговорены научными сообществами и организациями стран Европейского Союза.
Все вышеуказанные инстанции диктуют своеобразные правила и стандарты кислотности, определение общей щелочности воды, которую человек употребляет в бытовых или промышленных целях. Согласно многолетним исследованиям и научным экспериментам, максимально допустимым показателем щелочности питьевой воды принято считать pH от 7 до 7,5 ммоль/л. При этом не должна превышать показатель в 7 ммоль на литр. Минералы и соли побочного характера в воде должны быть в концентрации не выше 1 г на литр. В таком же количестве в воде допускается содержание побочных химических элементов, биологических и физических примесей, металлов и солей. Однако, стоит отметить, что все международные организации и регламенты полностью отрицают регламентированное наличие в питьевой воде бактерий или вирусов патогенного характера функционирования, поскольку их присутствие может стать причиной появления эпидемий и массовых заражений людей различного рода инфекциями и заболеваниями.

Что такое щелочность воды и для чего она нужна?

Щелочность питьевой воды в норме или, другими словами, кислотность воды, является специальным понятием, которое отображает наличие в воде активных ионов водорода, без которых невозможно осуществление многих химических и биологических реакций. Важно отметить, что впервые понятие щелочности воды единицы измерения было выведено и оформлено в единый показатель лишь в 1909 году датским ученым. Тогда для определения кислотности воды был введен символ pH. На что влияет щелочность воды? Примеси водорода в жидкости можно встретить практически везде, щелочь также присутствует в организме человека, что подтверждает важность данного химического понятия и его открытия. В начале двадцатого века было проведено много химических и микробиологических исследований, которые доказали наличие активной концентрации ионов водорода в человеческих тканях и жидкостях. Из этого следует, что от правильной нормы щелочности воды зависит напрямую слаженное и здоровое функционирование человеческого организма и всех его систем.

Закажите бесплатно консультацию эколога

Щелочность питьевой воды является регламентированным и строго контролируемым показателем, рамки которого устанавливает и контролирует каждая страна. Прибор для определения кислотности и щелочности воды сигнализирует о том, что кислотность питьевой воды может отличаться от регламентированной кислотности воды для промышленных целей. В зависимости от типа производства и целей использования жидкости, многие предприятия имеют специальные буферы, в которых стабильно поддерживается постоянный уровень концентрации ионов водорода, необходимый для осуществления химических или биологических реакций.

Питьевая вода, согласно регламентированным международным рамкам, должна содержать водород в концентрации не более 9 единиц. Превышение этой нормы считается опасным для человеческого здоровья, поскольку из-за перенасыщения тканей тела водородом в жидкостях происходят необратимые химические реакции, которые влекут за собой биологические деформации и развитие патологий.

Как определить удовлетворительный уровень щелочности?

Поскольку из воды и жидких веществ состоит основная часть человеческих тканей и органов, употребление жидкого вещества является необходимым ритуалом, без которого невозможно прожить ни единого дня. По этой причине очень важно постоянно следить за составом и качеством воды, которая употребляется ежедневно. Малейшие сбои и отклонения от регламентированных рамок могут губительно сказаться на организме и его функционировании, спровоцировать появление многих опасных и даже неизлечимых недугов.

Как определить щелочность воды в домашних условиях? Максимально пригодной и полезной для повседневного употребления человеком считается вода со щелочным показателем не выше 7,5-8,5. Такая норма называется слабой кислотностью и сигнализирует о нейтральном содержании активных ионов водорода, количество которых удовлетворяет все жизненно важные потребности и функции организма. Щелочность - как повысить щелочность воды? Очищается вода от лишней кислотности специальными фильтрующими установками или с помощью химических добавок. Если у человека нет возможности осуществлять регулярную очистку воды, использовать методику определения щелочности котловой воды и производить контроль ее качества, стоит приобретать уже очищенную воду в таре, которая продается в супермаркетах.

Правильная щелочность воды может повлиять на следующие факторы:

  • Обменные процессы. Техника определения щелочности воды, видео которой мы привели выше, говорит о том, что стабилизация концентрации ионов водорода в воде приводит к тому, что в человеческом организме налаживаются обменные процессы и восстанавливается бактериальная флора желудочно-кишечного тракта.
  • Умственная деятельность.Измеритель щелочности воды помог установить, что из-за нормированного поступления щелочности мозг человека работает слаженно, поскольку в него поступает достаточное количество кислорода и полезных веществ.
  • Иммунитет. Благодаря поступлению в организм правильного количества щелочи стабилизируется иммунная система и налаживается работа эндокринной железы.
От качества и чистоты воды зависит активность человека, его хорошее самочувствие и светлое настроение на каждый день.