Многогранник- это такое тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник. Тест по геометрии "многогранники и тела вращения" Тело поверхность которого состоит из конечного

1 вариант

1. Тело, поверхность которого состоит из конечного числа плоских многоугольников, называется:

1. Четырехугольник 2. Многоугольник 3. Многогранник 4. Шестиугольник

2. К многогранникам относятся:

1. Параллелепипед 2. Призма 3. Пирамида 4. Все ответы верны

3. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани называется:

1. Диагональю 2. Ребром 3. Гранью 4. Осью

4. У призмы боковые ребра:

1. Равны 2. Симметричны 3. Параллельны и равны 4. Параллельны

5. Грани параллелепипеда не имеющие общих вершин, называются:

1. Противолежащими 2. Противоположными 3. Симметричными 4. Равными

6. Перпендикуляр, опущенный из вершины пирамиды на плоскость основания, называется:

1. Медианой 2. Осью 3. Диагональю 4. Высотой

7. Точки, не лежащие в плоскости основания пирамиды, называются:

1. Вершинами пирамиды 2. Боковыми ребрами 3. Линейным размером

4. Вершинами грани

8. Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется:

1. Медианой 2. Апофемой 3. Перпендикуляром 4. Биссектрисой

9. У куба все грани:

1. Прямоугольники 2. Квадраты 3. Трапеции 4. Ромбы

10. Тело, состоящее из двух кругов и всех отрезков, соединяющих точки кругов называется:

1. Конусом 2. Шаром 3. Цилиндром 4. Сферой

11. У цилиндра образующие:

1. Равны 2. Параллельны 3. Симметричны 4. Параллельны и равны

12. Основания цилиндра лежат в:

1. Одной плоскости 2. Равных плоскостях 3. Параллельных плоскостях 4. Разных плоскостях

13. Поверхность конуса состоит из:

1. Образующих 2. Граней и ребер 3. Основания и ребра 4. Основания и боковой поверхности

14. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется:

1. Радиусом 2. Центром 3. Осью 4. Диаметром

15. Всякое сечение шара плоскостью есть:

1. Окружность 2. Круг 3. Сфера 4. Полукруг

16. Сечение шара диаметральной плоскостью называется:

1. Большим кругом 2. Большой окружностью 3. Малым кругом 4. Окружностью

17. Круг конуса называется:

1. Вершиной 2. Плоскостью 3. Гранью 4. Основанием

18. Основания призмы:

1. Параллельны 2. Равны 3. Перпендикулярны 4. Не равны

19. Площадью боковой поверхности призмы называется:

1. Сумма площадей боковых многоугольников

2. Сумма площадей боковых ребер

3. Сумма площадей боковых граней

4. Сумма площадей оснований

20. Пересечения диагоналей параллелепипеда является его:

1. Центром 2. Центром симметрии 3. Линейным размером 4. Точкой сечения

21. Радиус основания цилиндра 1,5 см, высота 4см. Найти диагональ осевого сечения.

1. 4,2 см. 2. 10 см. 3. 5 см.

0 . Чему равен диаметр основания, если образующая равна 7 см?

1. 7 см. 2. 14 см. 3. 3,5 см.

23. Высота цилиндра равна 8 см, радиус 1 см. Найти площадь осевого сечения.

1. 9 см 2 . 2. 8 см 2 3. 16 см 2 .

24. Радиусы оснований усеченного конуса равны 15 см и 12 см, высота 4 см. Чему равна образующая конуса?

1. 5 см 2. 4 см 3. 10 см

МНОГОГРАННИКИ И ТЕЛА ВРАЩЕНИЯ

2 вариант

1. Вершины многогранника обозначаются:

1. а, в, с, d ... 2. А, В, С, D ... 3. ab , cd , ac , ad ... 4. АВ, СВ, А D , СD ...

2. Многогранник, который состоит из двух плоских многоугольников, совмещенных параллельным переносом, называется:

1. Пирамидой 2. Призмой 3. Цилиндром 4. Параллелепипедом

3. Если боковые ребра призмы перпендикулярны основанию, то призма является:

1. Наклонной 2. Правильной 3. Прямой 4. Выпуклой

4. Если в основании призмы лежит параллелограмм, то она является:

1. Правильной призмой 2. Параллелепипедом 3. Правильным многоугольником

4. Пирамидой

5. Многогранник, который состоит из плоского многоугольника, точки и отрезков соединяющих их, называется:

1. Конусом 2. Пирамидой 3. Призмой 4. Шаром

6. Отрезки, соединяющие вершину пирамиды с вершинами основания, называются:

1. Гранями 2. Сторонами 3. Боковыми ребрами 4. Диагоналями

7. Треугольная пирамида называется:

1. Правильной пирамидой 2. Тетраэдром 3. Треугольной пирамидой 4. Наклонной пирамидой

8. К правильным многогранникам не относится:

1. Куб 2. Тетраэдр 3. Икосаэдр 4. Пирамида

9. Высота пирамиды является:

1. Осью 2. Медианой 3. Перпендикуляром 4. Апофемой

10. Отрезки, соединяющие точки окружностей кругов, называются:

1. Гранями цилиндра 2. Образующими цилиндра 3. Высотами цилиндра

4. Перпендикулярами цилиндра

1. Осью цилиндра 2. Высотой цилиндра 3. Радиусом цилиндра

4. Ребром цилиндра

12. Тело, которое состоит из точки, круга и отрезков соединяющих их, называется:

1. Пирамидой 2. Конусом 3. Шаром 4. Цилиндром

13. Тело, которое состоит из всех точек пространства, называется:

1. Сферой 2. Шаром 3. Цилиндром 4. Полусферой

14. Граница шара называется:

1. Сферой 2. Шаром 3. Сечением 4. Окружностью

15. Линия пересечения двух сфер есть:

1. Круг 2. Полукруг 3. Окружность 4. Сечение

16. Сечение сферы называется:

1. Кругом 2. Большой окружностью 3. Малым кругом 4. Малой окружностью

17. Грани выпуклого многогранника являются выпуклыми:

1. Треугольниками 2. Углами 3. Многоугольниками 4. Шестиугольниками

18. Боковая поверхность призмы состоит из…

1. Параллелограммов 2. Квадратов 3. Ромбов 4. Треугольников

19. Боковая поверхность прямой призмы равна:

1. Произведению периметра на длину грани призмы

2. Произведению длины грани призмы на основание

3. Произведению длины грани призмы на высоту

4. Произведению периметра основания на высоту призмы

20. К правильным многогранникам относятся:

21. Радиус основания цилиндра 2,5 см, высота 12см. Найти диагональ осевого сечения.

1. 15 см; 2. 14 см; 3. 13 см.

22. Наибольший угол между образующими конуса 60 0 . Чему равен диаметр основания, если образующая равна 5 см?

1. 5 см; 2. 10 см; 3. 2,5 см.

23. Высота цилиндра равна 4 см, радиус 1 см. Найти площадь осевого сечения.

1. 9 см 2 . 2. 8 см 2 3. 16 см 2 .

24. Радиусы оснований усеченного конуса равны 6 см и 12 см, высота 8 см. Чему равна образующая конуса?

1. 10 см; 2. 4 см; 3. 6 см.

Куб, шар, пирамида, цилиндр, конус - геометрические тела. Среди них выделяют многогранники. Многогранником называют геометрическое тело, поверхность которого состоит из конечного числа многоугольников. Каждый из этих многоугольников называется гранью многогранника, стороны и вершины этих многоугольников - соответственно ребрами и вершинами многогранника.

Двугранные углы между соседними гранями, т.е. гранями, име­ющими общую сторону - ребро многогранника - являются так­же и двугранными умами многогранника. Углы многоугольников - граней выпуклого многоугольника - являются плоскими умами многогранника. Кроме плоских и двугранных углов у выпуклого многогранника имеются еще и многогранные углы. Эти углы образу­ют грани, имеющие общую вершину.

Среди многогранников различают призмы и пирамиды.

Призма - это многогранник, поверхность которого состоит из двух равных многоугольников и параллелограммов, имеющих об­щие стороны с каждым из оснований.

Два равных многоугольника называются основаниями ггризмьг, а параллелограммы - ее боковыми гранями. Боковые грани образуют боковую поверхность призмы. Ребра, не лежащие в основаниях, называются боковыми ребрами призмы.

Призму называют п-угольной, если ее основаниями являются я-угольники. На рис. 24.6 изображена четырехугольная призма АВСDА"В"С"D".

Призму называют прямой, если ее боковыми гранями являются прямоугольники (рис. 24.7).

Призму называют правильной , если она прямая, а ее основа­ния - правильные многоугольники.

Четырехугольную призму называют параллелепипедом , если ее основания - параллелограммы.

Параллелепипед называют прямоугольным, если все его грани - прямоугольники.

Диагональ параллелепипеда - это отрезок, соединяющий его противоположные вершины. У параллелепипеда четыре диаго­нали.

Доказано, что диагонали параллелепи­педа пересекаются в одной точке и делятся этой точкой пополам. Диагонали прямо­угольного параллелепипеда равны.

Пирамида - это многогранник, по­верхность которого состоит из много­угольника - основания пирамиды, и треугольников, имеющих общую верши­ну, называемых боковыми гранями пи­рамиды. Общая вершина этих треуголь­ников называется вершиной пирамиды, ребра, выходящие из вер­шины, - боковыми ребрами пирамиды.

Перпендикуляр, опущенный из вершины пирамиды на основа­ние, а также длина этого перпендикуляра называется высотой пи­рамиды.

Простейшая пирамида - треугольная или тетраэдр (рис. 24.8). Особенность треугольной пирамиды состоит в том, что любую грань можно рассматривать как основание.

Пирамиду называют правильной, если в основании ее лежит правильный многоугольник, а все боковые ребра равны между собой.

Заметим, что следует различать правильный тетраэдр (т.е. тетра­эдр, у которого все ребра равны между собой) и правильную тре­угольную пирамиду (в ее основании лежит правильный треуголь­ник, а боковые ребра равны между собой, но их длина может от­личаться от длины стороны треугольника, который является ос­нованием призмы).

Различают выпуюше и невыпуклые многогранники. Определить вы­пуклый многогранник можно, если воспользоваться понятием вы­пуклого геометрического тела: многогранник называют выпуклым. если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками целиком содержит и соединяющий их отрезок.

Можно определить выпуклый многогранник иначе: многогран­ник называют выпуклым, если он полностью лежит по одну сторо­ну от каждого из ограничивающих его многоугольников.

Данные определения равносильны. Доказательство этого факта не приво­дим.

Все многогранники, которые до сих пор рассматривались, были выпуклыми (куб, параллелепипед, призма, пирамида и др.). Многогранник, изображенный на рис. 24.9, выпуклым не является.

Доказано, что в выпуклом многогран­нике все грани являются выпуклыми многоугольниками.

Рассмотрим несколько выпуклых многогранников (таблица 24.1)

Из этой таблицы следует, что для всех рассмотренных выпук­лых многогранников имеет место равенство В - Р + Г = 2. Оказа­лось, что оно справедливо и для любого выпуклого многогранни­ка. Впервые это свойство было доказано Л.Эйлером и получило название теоремы Эйлера.

Выпуклый многогранник называют правильным, если его гра­нями являются равные правильные многоугольники и в каждой вершине сходится одинаковое число граней.

Используя свойство выпуклого многогранного угла, можно до­казать, что различных видов правильных многогранников существу­ет не более пяти.

Действительно, если фан и многогранника - правильные тре­угольники, то в одной вершине их может сходиться 3, 4 и 5, так как 60" 3 < 360°, 60° - 4 < 360°, 60° 5 < 360°, но 60° 6 = 360°.

Если в каждой вершине многофанника сходится три правиль­ных треугольника, то получаем правшш/ый тетраэдр, что в пере­воде с феческого означает «четырехгранник» (рис. 24.10, а).

Если в каждой вершине многогранника сходится четыре пра­вильных треугольника, то получаем октаэдр (рис. 24.10, в). Его поверхность состоит из восьми правильных треугольников.

Если в каждой вершине многогранника сходится пято правиль­ных треугольников, то получаем икосаэдр (рис. 24.10, г). Его поверх­ность состоит из двадцати правильных треугольников.

Если грани многофанника - квадраты, то в одной вершине их может сходиться только три, так как 90° 3 < 360°, но 90° 4 = 360°. Этому условию удовлетворяет только куб. Куб имеет шесть фаней и поэтому называется также гексаэдром (рис. 24.10, б).

Если граани многофанника - правильные пятиугольники, то в одной вершине их может сходиться только фи, так как 108° 3 < 360°, пятиугольники и в каждой вершине сходится три грани, называется додекаэдром (рис. 24.10, д). Его поверхность состоит из двенадцати правильных пятиугольников.

Шестиугольными и более грани многогранника не могут быть, так как даже для шестиугольника 120° 3 = 360°.

В геометрии доказано, что в трехмерном евклидовом простран­стве существует ровно пять различных видов правильных много­гранников’.

Чтобы изготовить модель многогранника, нужно сделать его развертку (точнее развертку его поверхности).

Развертка многогранника - это фигура на плоскости, которая получается, если поверхность многогранника разрезать но некото рым ребрам и развернуть ее так, чтобы все многоугольники, вхо­дящие в эту поверхность, лежали в одной плоскости.

Отметим, что многогранник может иметь несколько различных разверток в зависимости от того, какие ребра мы разрезали. На рисунке 24.11 показаны фиг"уры, которые являются различными развертками правильной четырехугольной пирамиды, т.е. пирами­ды, в основании которой лежит квадрат, а все боковые ребра рав­ны между собой.

Чтобы фигура на плоскости была разверткой выпуклого много­гранника, она должна удовлетворять ряду требований, связанных с особенностями многогранника. Например, фигуры на рис. 24.12 не являются развертками правильной четырехугольной пирамиды: в фигуре, изображенной на рис. 24.12, а, в вершине М сходятся четыре грани, чего не может быть в правильной четырехугольной пирамиде; а в фигуре, изображенной на рис. 24.12, б, боковые ребра А В и ВС не равны.

Вообще, развертку многогранника можно получить путем раз­резания его поверхности не только по ребрам. Пример такой раз­вертки куба приведен на рис. 24.13. Поэтому более точно развертку многогранника можно определить как плоский многоугольник, из которого может быть сделана поверхность этого многогранника без перекрытий.

Тела вращения

Телом вращения называют тело, полученное в результате вра­щения некоторой фигуры (обычно плоской) вокруг прямой. Эту прямую называют осью вращения.

Цилиндр - эго тело, которое получается в результате вращения прямоугольника вокруг одной из его сторон. При этом указанная сто­рона является осью цилиндра. На рис. 24.14 изображен цилиндр с осью ОО’, полученный в результате вращения прямоугольника АА"О"О вокруг прямой ОО". Точки О и О" - центры оснований цилиндра.

Цилиндр, который получается в результате вращения прямо­угольника вокруг одной из его сторон, называют прямым круго­вым цилиндром, так как его основаниями являются два равных круга, расположенных в параллельных плоскостях так, что отре­зок, соединяющий центры кругов, перпендикулярен этим плос­костям. Боковую поверхность цилиндра образуют отрезки, равные стороне прямоугольника, параллельной оси цилиндра.

Разверткой боковой поверхности пря­мого кругового цилиндра, если ее раз­резать по образующей, является прямо­угольник, одна сторона которого равна длине образующей, а другая - длине ок­ружности основания.

Конус - это тело, которое получает­ся в результате вращения прямоугольного треугольника вокруг одного из катетов.

При этом указанный катет неподвижен и называется осью конуса. На рис. 24.15 изображен конус с осью SO, получен­ный в результате вращения прямоуголь­ного треугольника SOA с прямым уг­лом О вокруг катета S0. Точку S называют вершиной конуса, ОА - радиусом его основания.

Конус, который получается в результате вращения прямоуголь­ного треугольника вокруг одного из его катетов, называют пря­мым круговым конусом, гак как его основанием является круг, а вершина проектируется в центр этого круга. Боковую поверхность конуса образуют отрезки, равные гипотенузе треугольника, при вращении которого образуется конус.

Если боковую поверхность конуса разрезать по образующей, то ее можно «развернуть» на плоскость. Разверткой боковой поверх­ности прямого кругового конуса является круговой сектор с ради­усом, равным длине образующей.

При пересечении цилиндра, конуса или любого другого тела вращения плоскостью, содержагцей ось вращения, получается осевое сечение. Осевое сечение цилиндра - прямоугольник, осевое сече­ние конуса - равнобедренный треугольник.

Шар - это тело, которое получается в результате вращения полукруг а вокруг его диаметра. На рис. 24.16 изображен шар, получен­ный в результате вращения полукруга вокруг диаметра АА". Точку О называют центром шара, а радиус круга является радиусом шара.

Поверхность шара называют сферой. Сферу развернуть на плос­кость нельзя.

Любое сечение шара плоскостью есть круг. Радиус сечения шара будет наибольшим, если плоскость проходит через центр шара. Поэтому сечение шара плоскостью, проходящей через центр шара, называют большим кругом шара, а окружность, его ограничиваю­щая, - большой окружностью.

ИЗОБРАЖЕНИЕ ГЕОМЕТРИЧЕСКИХ ТЕЛ НА ПЛОСКОСТИ

В отличие от плоских фигур геометрические тела невозможно точно изобразить, например, на листе бумаги. Однако с помощью чертежей на плоскости можно получить достаточно наглядное изоб­ражение пространственных фигур. Для этого используются специ­альные способы изображения таких фигур на плоскости. Одним из них является параллельное проектирование.

Пусть даны плоскость а и пересекающая се прямая а. Возьмем в пространстве произвольную точку Л", не принадлежащую пря­мой а, и проведем через X прямую а", параллельную прямой а (рис. 24.17). Прямая а" пересекает плоскость в некоторой точке X", которая называется параллельной проекцией точки X на плос­кость а.

Если точка А"лежит на прямой а, то се параллельной проекци­ей X" является точка, в которой прямая а пересекает плоскость а.

Если точка X принадлежит плоскости а, то точка X" совпадает с точкой X.

Таким образом, если заданы плоскость а и пересекающая ее прямая а. то каждой точке X пространства можно поставить в соот­ветствие единственную точку А" - параллельную проекцию точки X на плоскость а (при проектировании параллельно прямой а). Плос­кость а называется плоскостью проекций. О прямой а говорят, что она залает направление проектирования - ггри замене прямой а любой другой параллельной ей прямой результат проектирования не изменится. Все прямые, параллельные прямой а, задаюз одно и то же направ­ление проектирования и называются вместе с прямой а проектирующими прямыми.

Проекцией фигуры F называют мно­жество F‘ проекцией всех се точек. Ото­бражение, сопоставляющее каждой точ­ке X фигуры F "ее параллельную проек­цию - точку X" фигуры F", называется параллельным проектированием фигуры F (рис. 24.18).

Параллельной проекцией реального предмета является его тень, падающая на плоскую поверхность при солнечном освещении, поскольку солнечные лучи можно считать параллельными.

Параллельное проектирование обладает рядом свойств, знание которых необходимо при изображении геометрических тел на плоскости. Сформулируем основные, не приводя их доказательства.

Теорема 24.1. При параллельном проектировании для прямых, не параллельных направлению проектирования, и для лежащих на них отрезков выполняются следующие свойства:

1) проекция прямой есть прямая, а проекция отрезка - отрезок;

2) проекции параллельных прямых параллельны или совпадают;

3) отношение длин проекций отрезков, лежащих на одной прямой или на параллельных прямых, равно отношению длин самих отрезков.

Из этой теоремы вытекает следствие: при параллельном про­ектировании середина отрезка проектируется в середину его про­екции.

При изображении геометрических тел на плоскости необходи­мо следить за выполнением указанных свойств. В остальном оно может быть произвольным. Так, углы и отношения длин непарал­лельных отрезков могут изменяться произвольно, т.е., например, треугольник при параллельном проектировании изображается про­извольным треугольником. Но если треугольник равносторонний, то па проекции его медианы должны соединять вершину треуголь­ника с серединой противоположной стороны.

И еще одно требование необходимо соблюдать при изображе­нии пространственных тел на плоскости - способствовать созда­нию верного представления о них.

Изобразим, например, наклонную призму, основаниями кото­рой являются квадраты.

Построим сначала нижнее основание призмы (можно начинать и с верхнего). По правилам параллельного проектирования огго изобразится произвольным параллелограммом АВСD (рис. 24.19, а). Так как ребра призмы параллельны, строим параллельные пря­мые, проходящие через вершины построенного параллелограмма и откладываем на них равные отрезки АА", ВВ’, СС", DD", длина которых произвольна. Соединив последовательно точки А", В", С", D", получим четырехугольник А"В"С"D", изображающий верхнее основание призмы. Нетрудно доказать, что А"В"С"D" - паралле­лограмм, равный параллелограмму АВСD и, следовательно, мы имеем изображение призмы, основаниями которой являются рав­ные квадраты, а остальные грани - параллелограммы.

Если нужно изобразить прямую призму, основаниями которой являются квадраты, то показать, что боковые ребра этой призмы перпендикулярны основанию, можно так, как это сделано на рис. 24.19, б.

Кроме тог о, чертеж на рис. 24.19, б можно считать изображени­ем правильной призмы, так как ее основанием является квадрат - правильный четырехугольник, а также - прямоугольным парал­лелепипедом, поскольку все его грани - прямоугольники.

Выясним теперь, как изобразить на плоскости пирамиду.

Чтобы изобразить правильную пирамиду, сначала чертят пра­вильный многоугольник, лежащий в основании, и его центр - точку О. Затем проводят вертикальный отрезок OS, изображаю­щий высоту пирамиды. Заметим, что вертикальность отрезка OS обеспечивает большую наглядность рисунка. И наконец, точку S соединяют со всеми вершинами основания.

Изобразим, например, правильную пирамиду, основанием ко­торой является правильный шестиугольник.

Чтобы верно изобразить при параллельном проектировании правильный шестиугольник, надо обратить внимание на следующее. Пусть АВСDЕF - правильный шестиугольник. Тогда ВСЕF - прямоугольник (рис. 24.20) и, значит, при параллельном проектировании он изобра­зится произвольным параллелограммом В"С"Е"F". Так как диагональ АD проходит через точку О - центр многоугольника АВСDЕF и параллельна отрезкам. ВС и ЕF и АО= ОD, то при параллельном проектировании она изобразится произвольным от­резком А"D", проходящим через точку О" параллельно В"С" и Е"F" и, кроме того, А"О" = О"D".

Таким образом, последовательность построения основания ше­стиугольной пирамиды такова (рис. 24.21):

§ изображают произвольный параллелограмм В"С"Е"F" и его диагонали; отмечают точку их пересечения O";

§ через точку О" проводят прямую, параллельную В’С" (или Е"F’);

§ на построенной прямой выбирают произвольную точку А" и отмечают точку D" такую, что О"D" = А"О", и соединяют точку А" с точками В" и F ", а точку D" - с точками С" и Е".

Чтобы завершить построение пирамиды, проводят вертикаль­ный отрезок ОS (его длина выбирается произвольно) и соединя­ют точку S со всеми вершинами основания.

При параллельном проектировании шар изображается в виде круга того же радиуса. Чтобы сделать изображение шара более на­глядным, рисуют проекцию какой-нибудь большой окружности, плоскость которой не перпендикулярна плоскости проекции. Эта проекция будет эллипсом. Центр шара изобразится центром этого эллипса (рис. 24.22). Теперь можно найти соответствующие полюсы N и S при условии, что отрезок, их соединяющий, перпендикуля­рен плоскости экватора. Для этого через точку О проводим пря­мую, перпендикулярную АВ и отмечаем точку С - пересечение этой прямой с эллипсом; затем через точку С проводим касатель­ную к эллипсу, изображающему экватор. Доказано, что расстоя­ние СМ равно расстоянию от центра шара до каждого из полюсов. Поэтому, отложив отрезки ОN и OS, равные СМ, получим полю­сы N и S.

Рассмотрим один из приемов построения эллипса (он основан на преобразовании плоскости, которое называется сжатием): строят окружность с диаметром и проводят хорды, перпендикулярные диаметру (рис. 24.23). Половину каждой из хорд делят пополам и полученные точки соединяют плавной кривой. Эта кривая - эл­липс, большой осью которого является отрезок АВ, а центром - точка О.

Этот прием мЬжно использовать, изображая на плоскости пря­мой круговой цилиндр (рис. 24.24) и прямой круговой конус (рис. 24.25).

Прямой круговой конус изображают так. Сначала строят эл­липс - основание, затем находят центр основания - точку О и перпендикулярно проводят отрезок OS, который изображает вы­соту конуса. Из точки S проводят к эллипсу касательные (это дела­ют «на глаз», прикладывая линейку) и выделяют отрезки и SD этих прямых от точки S до точек касания С и D. Заметим, что отрезок СD не совпадает с диаметром основания конуса.

«Виды многогранников» - Правильные звездчатые многогранники. Додекаэдр. Малый звездчатый додекаэдр. Многогранники. Гексаэдр. Тела Платона. Призматоид. Пирамида. Икосаэдр. Октаэдр. Тело, ограниченное конечным числом плоскостей. Звездчатый октаэдр. Две грани. Закон взаимности. Математик. Тетраэдр.

«Геометрическое тело многогранник» - Многогранники. Призмы. Существование несоизмеримых величин. Пуанкаре. Грань. Измерение объемов. Грани параллелепипеда. Прямоугольный параллелепипед. Мы часто встречаем пирамиду на улице. Многогранник. Интересные факты. Александрийский маяк. Геометрические формы. Расстояние между плоскостями. Мемфис.

«Каскады многогранников» - Ребро куба. Ребро октаэдра. Куб и додекаэдр. Единичный тетраэдр. Додекаэдр и икосаэдр. Додекаэдр и тетраэдр. Октаэдр и икосаэдр. Многогранник. Правильный многогранник. Октаэдр и додекаэдр. Икосаэдр и октаэдр. Единичный икосаэдр. Тетраэдр и икосаэдр. Единичный додекаэдр. Октаэдр и тетраэдр. Куб и тетраэдр.

««Многогранники» стереометрия» - Многогранники в архитектуре. Сечение многогранников. Дайте название многограннику. Великая пирамида в Гизе. Платоновы тела. Исправить логическую цепочку. Многогранник. Историческая справка. Звездный час многогранников. Решение задач. Цели урока. «Игра со зрителями». Соответствуют ли геометрические фигуры и их названия.

«Звёздчатые формы многогранников» - Большой звездчатый додекаэдр. Многогранник, изображенный на рисунке. Звездчатые многогранники. Боковые ребра. Звездчатые кубооктаэдры. Звездчатый усеченный икосаэдр. Многогранник, полученный усечением звездчатого усеченного икосаэдра. Вершины большого звездчатого додекаэдра. Звездчатые икосаэдры. Большой додекаэдр.

«Сечение многогранника плоскостью» - Сечение многогранников. Многоугольники. Разрезы образовали пятиугольник. След секущей плоскости. Сечение. Найдём точку пересечения прямых. Плоскость. Построй сечение куба. Постройте сечение призмы. Находим точку. Призма. Методы построения сечений. Полученный шестиугольник. Сечение куба. Аксиоматический метод.

Всего в теме 29 презентаций



Многогранник

  • Многогранник - это такое тело, поверхность которого состоит из конечного числа плоских многоугольников.



Многогранник называется выпуклым

  • Многогранник называется выпуклым ,если он расположен по одну сторону каждого плоского многоугольника на его поверхности.





  • Евклид (предположительно 330- 277 до н.э.) – математик Александрийской школы Древней Греции,автор первого дошедшего до нас трактата по математике «Начала» (в 15 книгах)



боковыми гранями .

  • Призма-многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников. Многоугольники Ф и Ф1, лежащие в параллельных плоскостях, называют основаниями призмы, а остальные грани - боковыми гранями .


  • Поверхность призмы, таким образом, состоит из двух равных многоугольников (оснований) и параллелограммов (боковых граней). Различают призмы треугольные, четырехугольные, пятиугольные и т.д. в зависимости от числа вершин основания.

  • Если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют прямой ; если боковое ребро призмы не перпендикулярно плоскости ее основания, то такую призму называют наклонной . У прямой призмы боковые грани - прямоугольники.


Основания призмы равны.

  • Основания призмы равны.

  • У призмы основания лежат в параллельных плоскостях.

  • У призмы боковые ребра параллельны и равны.


  • Высотой призмы называется расстояние между плоскостями ее оснований.


  • Оказывается,что призма может быть не только геометрическим телом,но и художественным шедевром.Именно призма стала основой картин Пикассо,Брака,Грисса и т.д.


  • Оказывается,что снежинка может принять форму шестигранной призмы,но это будет зависеть от температуры воздуха.
















  • В III веке до н. э. был построен маяк, чтобы корабли могли благополучно миновать рифы на пути в александрийскую бухту. Ночью им помогало в этом отражение языков пламени, а днём- столб дыма. Это был первый в мире маяк, и простоял он 1500 лет.

  • Маяк был построен на маленьком острове Фарос в Средиземном море, около берегов Александрии. На его строительство ушло 20 лет, а завершён он был около 280 года до н.э.



  • В XIV веке маяк был уничтожен землетрясением. Его обломки использовали при строительстве военного форта. Форт не раз перестраивался и до сих пор стоит на месте первого в мире маяка.



    Мавсол был правителем Карий. Столицей области был Галикарнас. Мавсол женился на своей сестре Артемизии. Он решил построить гробницу для себя и своей царицы. Мавсол мечтал о величественном памятнике, который бы напоминал миру о его богатстве и могуществе. Он умер до окончания работ над гробницей. Руководить строительством продолжила Артемизия. Гробница была построена в 350 году до н. э. Она была названа Мавзолеем по имени царя.



    Пепел царственной четы хранился в золотых урнах в усыпальнице в основании здания. Ряд каменных львов сторожил это помещение. Само сооружение напоминало греческий храм, окружённый колоннами и статуями. На вершине здания находилась ступенчатая пирамида. На высоте 43 м над землёй её венчало скульптурное изображение колесницы, запряжённой лошадьми. На ней, вероятно, стояли статуи царя и царицы.


  • Спустя восемнадцать столетий землетрясение разрушило Мавзолей до основания. Ещё триста лет прошло, прежде чем археологи приступили к раскопкам. В 1857 году все находки были перевезены в Британский музей в Лондоне. Теперь на месте, где когда-то был Мавзолей, осталась лишь горстка камней.



кристаллы .

    Существуют не только геометрические формы,созданные руками человека.Их много и в самой природе.Воздействие на облик земной поверхности таких природных факторов,как ветер,вода,солнечный свет,весьма стихийно и носит беспорядочный характер.Однако песчаные дюны,галька на морском берегу,кратер потухшего вулкана имеют,как правило,геометрически правильные формы.В земле иногда находят камни такой формы,как будто их кто-то тщательно выпиливал,шлифовал,полировал.Это - кристаллы .




параллелепипедом .

  • Если основание призмы есть параллелограмм,то он называется параллелепипедом .









  • Моделями прямоугольного параллелепипеда служат:

  • классная комната


  • Оказывается,что кристаллы кальцита,сколько их не дроби на более мелкие части,всегда распадаются на осколки,имеющие форму параллелепипеда.


  • Городские здания чаще всего имеют форму многогранников.Как правило,это обычные параллелепипеды.И лишь неожиданные архитектурные решения украшают города.


  • 1.Является ли призма правильной, если её ребра равны?

  • а)да; в) нет. Обоснуйте свой ответ.

  • 2.Высота правильной треугольной призмы равна 6 см. Сторона основания равна 4 см. Найдите площадь полной поверхности этой призмы.

  • 3. Площади двух боковых граней наклонной треугольной призмы равны 40 и 30 см2. Угол между этими гранями прямой. Найдите площадь боковой поверхности призмы.

  • 4. В параллелепипеде ABCDA1B1C1D1 проведены сечения A1BC и CB1D1. В каком отношении эти плоскости делят диагональ AC1.



















  • 1) тетраэдр, имеющий 4 грани, 4 вершины, 6 ребер;

  • 2) куб - 6 граней, 8 вершин, 12 ребер;

  • 3) октаэдр - 8 граней, 6 вершин, 12 ребер;

  • 4) додекаэдр - 12 граней, 20 вершин, 30 ребер;

  • 5) икосаэдр - 20 граней, 12 вершин, 30 ребер.











Фалеса Милетского , основателя ионийской Пифагора Самосского

    Ученые и философы Древней Греции восприняли и переработали достижения культуры и науки Древнего Востока. Фалес, Пифагор, Демокрит, Евдокс и др. ездили в Египет и Вавилон для изучения музыки, математики и астрономии. Не случайно зачатки греческой геометрической науки связаны с именем Фалеса Милетского , основателя ионийской школы. Ионийцы, населявшие территорию, которая граничила с восточными странами, первыми заимствовали знания Востока и стали их развивать. Ученые ионийской школы впервые подвергли логической обработке и систематизировали математические сведения, позаимствованные у древневосточных народов, в особенности у вавилонян. Фалесу, главе этой школы, Прокл и другие историки приписывают немало геометрических открытий. Об отношении Пифагора Самосского к геометрии Прокл пишет в своем комментарии к "Началам" Евклида следующее: "Он изучал эту науку (т. е. геометрию), исходя от первых ее оснований, и старался получать теоремы при помощи чисто логического мышления". Прокл приписывает Пифагору, кроме известной теоремы о квадрате гипотенузы, еще построение пяти правильных многогранников:



Тела Платона

    Тела Платона -это выпуклые многогранники, все грани которых правильные многоугольники. Все многогранные углы правильного многогранника конгруэнтны. Как это следует уже из подсчета суммы плоских углов при вершине, выпуклых правильных многогранников не больше пяти. Указанным ниже путем можно доказать, что существует именно пять правильных многогранников (это доказал Евклид). Они - правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.


Октаэдр (рис.3).

  • Октаэдр -восьмигранник; тело, ограниченное восемью треугольниками; правильный октаэдр ограничен восемью равносторонними треугольниками; один из пяти правильных многогранников. (рис.3).

  • Додекаэдр -двенадцатигранник, тело, ограниченное двенадцатью многоугольниками; правильный пятиугольник; один из пяти правильных многогранников. (рис.4).

  • Икосаэдр -двадцатигранник, тело, ограниченное двадцатью многоугольниками; правильный икосаэдр ограничен двадцатью равносторонними треугольниками; один из пяти правильных многогранников. (рис.5).



    Грани додекаэдра являются правильными пятиугольниками. Диагонали же правильного пятиугольника образуют так называемый звездчатый пятиугольник - фигуру, которая служила эмблемой, опознавательным знаком для учеников Пифагора. Известно, что пифагорейский союз был одновременно философской школой, политической партией и религиозным братством. Согласно легенде, один пифагореец заболел на чужбине и не мог перед смертью расплатиться с ухаживавшим за ним хозяином дома. Последний нарисовал на стене своего дома звездчатый пятиугольник. Увидав через несколько лет этот знак, другой странствующий пифагореец осведомился о случившемся у хозяина и щедро его вознаградил.

  • Достоверных сведений о жизни и научной деятельности Пифагора не сохранилось. Ему приписывается создание учения о подобии фигур. Он, вероятно, был среди первых ученых, рассматривавших геометрию не как практическую и прикладную дисциплину, а как абстрактную логическую науку.



    В школе Пифагора было открыто существование несоизмеримых величин, т. е. таких, отношение между которыми невозможно выразить никаким целым или дробным числом. Примером может служить отношение длины диагонали квадрата к длине его стороны, равное Ц2. Число это не является рациональным (т. е. целым или отношением двух целых чисел) и называется иррациональным, т.е. нерациональным (от латинского ratio - отношение).


Тетраэдр (рис.1).

  • Тетраэдр -четырехгранник, все грани которого треугольники, т.е. треугольная пирамида; правильный тетраэдр ограничен четырьмя равносторонними треугольниками; один из пяти правильных многоугольников. (рис.1).

  • Куб или правильный гексаэдр (рис.2).


Тетраэдр -четырехгранник, все грани которого треугольники, т.е. треугольная пирамида; правильный тетраэдр ограничен четырьмя равносторонними треугольниками; один из пяти правильных многоугольников. (рис.1).

  • Тетраэдр -четырехгранник, все грани которого треугольники, т.е. треугольная пирамида; правильный тетраэдр ограничен четырьмя равносторонними треугольниками; один из пяти правильных многоугольников. (рис.1).

  • Куб или правильный гексаэдр - правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами. (рис.2).



Пирамида

  • Пирамида -многогранник, который состоит из плоского многоугольника- основание пирамиды, точки, не лежащие в плоскости основания-вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания

  • На рисунке изображены пятиугольная пирамида SABCDE и ее развертка. Треугольники, имеющие общую вершину, называют боковыми гранями пирамиды; общую вершину боковых граней - вершиной пирамиды; многоугольник, которому не принадлежит эта вершина,- основанием пирамиды; ребра пирамиды, сходящиеся в ее вершине,- боковыми ребрами пирамиды. Высота пирамиды - это отрезок перпендикуляра, проведенного через ее вершину к плоскости основания, с концами в вершине и на плоскости основания пирамиды. На рисунке отрезок SO - высота пирамиды.

  • Определение . Пирамида, основание которой - правильный многоугольник и вершина проектируется в его центр, называется правильной.

  • На рисунке изображена правильная шестиугольная пирамида.



    Объемы зерновых амбаров и других сооружений в виде кубов, призм и цилиндров египтяне и вавилоняне, китайцы и индийцы вычисляли путем умножения площади основания на высоту. Однако древнему Востоку были известны в основном только отдельные правила, найденные опытным путем, которыми пользовались для нахождения объемов для площадей фигур. В более позднее время, когда геометрия сформировалась как наука, был найден общий подход к вычислению объемов многогранников.

  • Среди замечательных греческих ученых V - IV вв. до н.э., которые разрабатывали теорию объемов, были Демокрит из Абдеры и Евдокс Книдский.

  • Евклид не применяет термина "объем". Для него термин "куб", например, означает и объем куба. В ХI книге "Начал" изложены среди других и теоремы следующего содержания.

  • 1. Параллелепипеды с одинаковыми высотами и равновеликими основаниями равновелики .

  • 2. Отношение объемов двух параллелепипедов с равными высотами равно отношению площадей их оснований .

  • 3. В равновеликих параллелепипедах площади оснований обратно пропорциональны высотам .

  • Теоремы Евклида относятся только к сравнению объемов, так как непосредственное вычисление объемов тел Евклид, вероятно, считал делом практических руководств по геометрии. В произведениях прикладного характера Герона Александрийского имеются правила для вычислений объема куба, призмы, параллелепипеда и других пространственных фигур.


  • Призма, основание которой - параллелограмм, называется параллелепипедом.

  • В соответствии с определением параллелепипед - это четырехугольная призма, все грани которой - параллелограммы . Параллелепипеды, как и призмы, могут быть прямыми и наклонными . На рисунке 1 изображен наклонный параллелепипед, а на рисунке 2- прямой параллелепипед.

  • Прямой параллелепипед, основанием которого служит прямоугольник, называют прямоугольным параллелепипедом . У прямоугольного параллелепипеда все грани - прямоугольники. Моделями прямоугольного параллелепипеда служат классная комната, кирпич, спичечная коробка.

  • Длины трех ребер прямоугольного параллелепипеда, имеющих общий конец, называют его измерениями . Например, имеются спичечные коробки с измерениями 15, 35, 50 мм. Куб - прямоугольный параллелепипед с равными измерениями. Все шесть граней куба - равные квадраты.


  • Рассмотрим некоторые свойства параллелепипеда.

  • Теорема. Параллелепипед симметричен относительно середины его диагонали.

  • Из теоремы непосредственно следуют важные свойства параллелепипеда :

  • 1. Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам. 2. Противолежащие грани параллелепипеда параллельны и равны